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MATH 166 

Lesson 4.5b 

Substitution with Definite Integrals & Symmetry 

 

Using u-substitution with a definite integral is not that different from using u-substitution 

with an indefinite integral but there are some subtle differences that are worth discussing. 

Below you will see the problem 

2

2

1

1x x dx  worked out in two different ways. It is 

important to understand both methods but you can eventually choose the method 

you like better since they are equivalent. 

 

Method 1: 

2

2

1

1x x dx  

We start with 2 1u x   so 2du xdx  or 
2

du
x dx . Next, notice that the lower limit of 

integration is 1x   and the upper limit is 2x  . If we are truly going to transform this 

integral to the u variable, then this would mean changing the existing limits of integration 

( 1 2x   ) into new limits of integration ( ? ?u   ). We can use 2 1u x   to figure 

this out (see the table below): 

 

x (original limits 

of integration) 

substitution
2 1u x   

u (new limits 

of integration) 

1 21 1u    2 

2 22 1u    5 

 

Thus, our u limits of integration are 2 5u   . The newly transformed problem looks 

like this:  

2 2 5

2 2

1 1 2

1 1
2

du
x x dx x x dx u      . Finishing, we have 

 
55 3/2

1/2 3/2 3/2

2 2

1 1 1
5 2

2 2 3 / 2 3

u
u du     . 

 

Method 2: 

2

2

1

1x x dx  

 

This method begins the same way with 2 1u x   and 2du xdx . At this point, you may 

notice that if the original integral had a “2x dx ” the problem would actually be fairly easy 

to do. Since we only have “ x dx ” in the problem (and not “2x dx ”), this is motivation to 

multiply the integral by 2—but you have to also divide the integral by 2 so the net effect 

leaves the problem unchanged. This looks like this: 
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  
2 2

2 2

1 1

original  problem problem  rewritten

1
1 1 2

2
x x dx x x dx     

 

Since we now have a composite function 2 1x   with the derivative of the inside 

function close by ( 2x dx ), this means we can apply the Chain Rule in reverse.  This looks 

like  
 

   

2
3/2

2 22
3/2

2 2 3/2 3/2

11
1

11 1 1 1
1 2 1 5 2

2 2 3 / 2 3 3

x
x x dx x


      . 

 

Summative Note: Although Method 2 encapsulates a bit more than Method 1 (e.g., 

Method 1 shows more detail), Method 2 is preferred once you eventually get 

comfortable with substitution. The key advantage is that you don’t need to actually 

switch to variable u in Method 2; this is true even for the limits of integration. 

 

We close with some nice properties/shortcuts related to integrating even and odd 

functions from algebra. Recall that even functions have graphs that are symmetric with 

respect to the y-axis; odd functions have symmetry with respect to a 180 degree turn. 

 

Symmetry Theorem: 

1.  If  f x  is an even function, then    
0

2

a a

a

f x dx f x dx


  . 

2.  If  f x  is an odd function, then   0

a

a

f x dx


 . 

 

Both of these have nice geometric interpretations.  For f  even, consider something like 

 
2

2

f x dx


  (see Figure 1). For f  odd, consider something like  
1.8

1.8

f x dx


  (see Figure 

2). Can you see why the Symmetry Theorem is true? 

 

        
 Figure 1. ( f  is even)   Figure 2. ( f  is odd) 

 


