MTH 150	Name:
Initial Skills Exam (Sample)	Date:
Key	

<u>Directions</u>: Answer each question to the best of your ability. Be sure to provide explanations where requested (use the space provided). No calculators please.

For items 1-3, show all work.

1. TRUE or FALSE: For any numbers a and b, $\sqrt{a^2 + b^2} = a + b$. Explain your answer.

This is false in general. It may work for some choices of *a* and *b*. For example, if a = 5 and b = 0 then it is true that $\sqrt{5^2 + 0^2} = 5 + 0$. However, if a = 2 and b = 3 then $\sqrt{2^2 + 3^2} = 2 + 3$ leads to $\sqrt{13} = 5$, which is a false statement.

2. TRUE or FALSE: If x is any number, then $x^2 \ge x$. Explain your answer.

This is false in general. Similar to item # 1, this will be true for many choices of x. For example, if x = 4 then it is indeed true that $4^2 \ge 4$. Also, equality holds if x = 0 or x = 1. If one chooses a common fractional value such as $x = \frac{1}{2}$, then the statement reads $(\frac{1}{2})^2 \ge \frac{1}{2}$ or $\frac{1}{4} \ge \frac{1}{2}$, a false statement.

3. Factor $2x^4 - 6x^3 - 8x^2 + 24x$ completely. Show all work.

There are numerous ways to approach this. Here is a straightforward method:

$$2x^{4} - 6x^{3} - 8x^{2} + 24x = 2x(x^{3} - 3x^{2} - 4x + 12)$$

= $2x(x^{2}(x-3) - 4(x-3))$
= $2x((x-3)(x^{2} - 4))$
= $2x(x-3)(x+2)(x-2)$. \leftarrow Answer

Items 4-10 are multiple choice. Circle your answer.

4. Find
$$\sin\left(\frac{2\pi}{3}\right)$$
.
(a) $\frac{\sqrt{3}}{2}$ (b) $-\frac{\sqrt{3}}{2}$
(c) $\frac{1}{2}$ (d) $-\frac{1}{2}$

There are many ways to approach this (recall/memorization, reference angles, special triangles, graph of the sine wave, unit circle, etc.). Using the fact that π radians is equivalent to 180° , $\frac{2\pi}{3}$ radians is equivalent to 120° . Then, recall from the symmetry of the sine wave (or the unit circle) that $\sin 120^{\circ} = \sin 60^{\circ}$. Since $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$, the answer is (a).

5. Find the solution(s) to $\sin^2 \theta = \frac{1}{2}$ on the interval $[0, 2\pi]$.

(a) $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ (b) $\frac{\pi}{6}$ and $\frac{5\pi}{6}$ (c) $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, and $\frac{7\pi}{4}$ (d) $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, and $\frac{11\pi}{6}$

The statement $\sin^2 \theta = \frac{1}{2}$ implies that $\sin \theta = \pm \sqrt{\frac{1}{2}}$ after taking a square root.

Rationalizing the right-hand side reveals the more familiar form $\pm \frac{\sqrt{2}}{2}$ so we have

 $\sin \theta = \pm \frac{\sqrt{2}}{2}$. Then use your knowledge of key sine values and periodicity to conclude that $\theta = \frac{\pi}{4}$ and $\theta = \pi - \frac{\pi}{4}$ for $\sin \theta = \frac{\sqrt{2}}{2}$ and $\theta = \pi + \frac{\pi}{4}$ and $\pi = \frac{\sqrt{2}}{2}$.

$$\theta = 2\pi - \frac{\pi}{4}$$
 for $\sin \theta = -\frac{\sqrt{2}}{2}$. Thus, the theta values are $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$, and $\frac{7\pi}{4}$. The answer is (c).

6. Evaluate $\arctan \frac{\sqrt{3}}{3}$. (a) $\frac{\pi}{3}$ (b) $-\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $-\frac{\pi}{6}$

The expression $\arctan \frac{\sqrt{3}}{3} = ?$ is equivalent to asking $\tan(?) = \frac{\sqrt{3}}{3}$. Basic recall says 30° or $\frac{\pi}{6}$. The answer is (c).

7. Find the exact solutions to $x^2 + 4x = 7$.

(a) $x = 3$	and $x = 7$	(b)	$x = -2 + \sqrt{12}$	and $x =$	$-2-\sqrt{11}$
(c) $x = 3$	and $x = -\frac{1}{2}$	(d)	$x = -2 + i\sqrt{3}$	and $x =$	$-2-i\sqrt{3}$

Completing the square or the quadratic formula will lead to the solution. $x^2 + 4x = 7$ leads to $x^2 + 4x + 4 = 7 + 4$ or $(x+2)^2 = 11$ so $x+2 = \pm\sqrt{11}$ and finally $x = -2 \pm \sqrt{11}$. Choose (b).

8. Given that
$$f(x) = x^3 + 5$$
, find $f^{-1}(x)$

(a)
$$f^{-1}(x) = \sqrt[3]{x} - \sqrt[3]{5}$$

(b) $f^{-1}(x) = \sqrt[3]{x} - 5$
(c) $f^{-1}(x) = \frac{1}{x^3 + 5}$
(d) $f^{-1}(x) = \sqrt[3]{x - 5}$

Since $f^{-1}(x)$ signifies the inverse function, we should use the algorithm of (1) switching x and y and then (2) solving for y. We are given that $y = x^3 + 5$ so step (1) gives $x = y^3 + 5$. Then solving for y gives $y^3 = x - 5$ so $y = \sqrt[3]{x-5}$. Thus, the inverse is given by $f^{-1}(x) = \sqrt[3]{x-5}$, option (d).

9. Write $\ln(x+1) - 3\ln(x+2)$ as a single logarithm.

(a)
$$\frac{\ln(x+1)}{\ln(x+2)^3}$$
 (b) $\frac{x+1}{(x+2)^3}$
(c) $\ln \frac{x+1}{(x+2)^3}$ (d) $\ln \frac{1}{8}$

Using the properties of logarithms,

$$\ln(x+1) - 3\ln(x+2) = \ln(x+1) - \ln(x+2)^{3}$$
$$= \ln\frac{x+1}{(x+2)^{3}}. \quad \leftarrow \text{Answer}$$

The answer is (c).

10. Find the slope of the line passing through the points (1, -2) and (-3, 4).

(a) 1
(b)
$$-1$$

(c) $\frac{3}{2}$
(d) $-\frac{3}{2}$

The slope of the line is given by $m = \frac{\Delta y}{\Delta x} = \frac{4 - (-2)}{-3 - 1} = \frac{6}{-4} = -\frac{3}{2}$. Choice (d) is the correct answer.